homeabout uscontact us

 

Variables Overview

 

Overview

Definition of a Variable

In GeneLinker™, a variable is a column of data other than gene expression values used to differentiate samples. A variable can store:

e.g. malignant vs. benign.

e.g. predicted malignant vs. predicted benign.

e.g. high dose vs. low dose; time the sample was taken; animal A vs. animal B vs. animal C, etc.

 

Variable File Formats

One-column: A one-column format file consists of the class name of each sample, one per line, in the same sample order as in the expression data file. The first row must not contain a column header.

Two-column: The two-column format has the sample names in the first column and the variable values (class names) in the second. The two-column format can be tab-separated or comma-separated. If you want class names which include commas, you must use two-column format with tab separators between the sample names and class labels. The first row must contain column headers.

Uses of a Variable

Variables can be used many ways in GeneLinker™.

 

Note on the Value 'Unknown'

Any GeneLinker™ variable may take on the special value of 'Unknown'. In the output of a trained classifier, this means that the classifier could not make a reliable prediction of the sample class. In other contexts, 'Unknown' is treated in the same manner as any other class. To reduce confusion we recommend that you use more informative class labels and reserve 'Unknown' for the output of the classifier.

 

Variable Types

Variables which attempt to describe the same phenomenon are grouped together into a Variable Type. GeneLinker™ does not intuit which variables refer to the same phenomenon the way a person does, so you must define a variable type for each variable you import.

If you wished to study disease outcomes with the same expression dataset, you could define a new variable type 'outcome' which might have values such as 'survived' and 'died'.  You could then import a variable of that type, train classifiers and attempt further predictions.

 

Observed vs. Predicted Variables

In GeneLinker™, imported variables are referred to as observed variables, and variables generated by a classifier are predicted. You can see the values of any or all of the variables associated with a given dataset using the Variable Viewer. You can edit, delete, compare or export variables using the Variable Manager.

 

Variable Indicator

In the Experiments navigator, a root dataset that has one or more variables associated with it has the variables tag on the icon next to its name. The same variables are associated with all the descendants of this dataset.

for a complete dataset.

for an incomplete dataset.

 

Variables and Classification

Variables are typically imported into GeneLinker™ for one of two purposes related to Classification:  A variable may be a training target, providing known classes for training a classifier, or a variable may be a set of test results for comparison with the predictions of a trained classifier. Note that for a given prediction problem, both the training variable and the test variable must be imported as the same Variable Type.

 

Related Topics:

Importing Variables

Creating Variables

Variable Viewer

Variable Manager

Variables in Supervised Learning